

Department of Materials Science and Engineering

Colloquium Seminar Hosted by Prof. Alex Orlov

February 10, 2016
12:00 pm Old Engineering Re

Room 301

The Materials Science and Engineering Department welcomes

Dr. Jingguang ChenThayer Lindsley Professor of Chemical Engineering,
Columbia University, New York, NY 10027, USA

Catalytic Conversion of Carbon Dioxide

Ocean acidification and climate change are expected to be two of the most difficult scientific challenges of the 21st century. Converting CO₂ into valuable chemicals and fuels is one of the most practical routes for reducing CO₂ emissions while fossil fuels continue to dominate the energy sector. The catalytic reduction of CO₂ by H₂ can lead to the formation of three types of products: CO through the reverse water-gas shift (RWGS) reaction [1], methanol via selective hydrogenation [2], and hydrocarbons through combination of CO₂ reduction with Fischer-Tropsch (FT) reactions. Our research approaches involve the combination of DFT calculations and surface science studies over single crystal surfaces, evaluations over supported catalysts, and in-situ characterization under reaction conditions. In the current talk we will present some of

Department of Materials Science and Engineering

Colloquium Seminar Hosted by Prof. Alex Orlov

February 10, 2016 12:00 pm Old Engineering Room 301

our recent results in CO_2 conversion via both heterogenerous catalysis [3] and electrocatalysis [4]. We will also discuss the generation of CO_2 -free H_2 [5,6], which is critical for net CO_2 reduction. We will conclude by discussing challenges and opportunities in this important research field [7].

References:

- [1] M.D. Porosoff, X. Yang, J.A. Boscoboinik, and J.G. Chen, "Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO₂ to CO", *Angewandte Chemie International Edition*, 53 (2014) 6705.
- [2] X. Yang, S. Kattel, S.D. Senanayake, J.A. Boscoboinik, X. Nie, J. Graciani, J.A. Rodriguez, P. Liu, D.J. Stacchiola and J.G. Chen, "Low pressure CO₂ hydrogenation to methanol over gold nanoparticles activated on a CeOx/TiO₂ interface", *Journal of the American Chemical Society*, 137 (2015) 10104.
- [3] M.D. Porosoff, M. Myint, S. Kattel, Z. Xie, E. Gomez, P. Liu and J.G. Chen, "Identifying different types of catalysts for CO₂ reduction by ethane through dry reforming and oxidative dehydrogenation", *Angewandte Chemie International Edition*, 54 (2015) 15501.
- [4] Q. Lu, J. Rosen, Y. Zhou, G.S. Hutchings, Y.C. Kimmel, J.G. Chen and F. Jiao, "A Highly Selective and Efficient Electrocatalyst for Carbon Dioxide Reduction", *Nature Communications*, 5 (2014) 3242.
- [5] M.R. Stonor, T.E. Fergusonb, J.G. Chen and A.-H. Park, "Biomass Conversion to H₂ with Substantially Suppressed CO₂ Formation in the Presence of Group I & Group II Hydroxides and a Ni/ZrO₂ Catalyst", *Energy & Environmental Science*, 8 (2015) 1702.
- [6] Q. Lu, G.S. Hutchings, W. Yu, Y. Zhou, R.V. Forest, R. Tao, J. Rosen, B.T. Yonemoto1, Z. Cao, H. Zheng, J.Q. Xiao, F. Jiao and J.G. Chen, "Highly Porous Non-precious Bimetallic Electrocatalysts for Efficient Hydrogen Evolution", *Nature Communications*, 6 (2015) 6567
- [7] M.D. Porosoff, B. Yan and J.G. Chen, "Catalytic reduction of CO₂ by H₂ for synthesis of CO, methanol and hydrocarbons: Challenges and opportunities", *Energy & Environmental Science*, (2015) DOI: 10.1039/C5EE02657A.